Recall that a diagram D is n–colourable if there is a labelling of the arcs of D by elements of \mathbb{Z}_n using at least two distinct elements and satisfying the rack

$$a^b = a \triangleright b := 2b - a \pmod{n}.$$

Exercise 2.1 (Easy). Verify that if (G, \cdot) is a group then (G, \triangleright) is a rack where

$$a \triangleright b := b \cdot a \cdot b^{-1}.$$

Exercise 2.2. Show that for every n, the unknot is not n–colourable and the unlink is n–colourable.

Exercise 2.3. Use colourability to show that the 7_8^2 link, shown below, is not the unlink.

Exercise 2.4. Give an example of two distinct knots K and L for which K is n–colourable if and only if L is n–colourable.

Exercise 2.5. Show that the granny knot and the square knot, shown below respectively, have isomorphic fundamental groups.