Exercise 4.1. Prove that when \(k \) is even the Alexander polynomial of the \(k \)-twist knot (see http://en.wikipedia.org/wiki/Twist_knot) is

\[
-\frac{k}{2}t + (k + 1) - \frac{k}{2}t^{-1}.
\]

Exercise 4.2. Compute the Alexander polynomials of each of these two knots. You should use a computer algebra system.

![Knots](image1.png)

Exercise 4.3. Show that if \(L \) is a split link then \(\Delta_L(t) = 0 \).

Exercise 4.4. Show that if two knots cannot be distinguished by their Alexander polynomials then they cannot be distinguished by their colourability.

Exercise 4.5. Show that the figure 8 knot and the \(5_1 \) knot, shown below, cannot be distinguished by their colourability but have distinct Alexander polynomials.

![Knots](image2.png)

Exercise 4.6 (Medium). For what \(k \) is there a knot \(K \) such that

\[
\Delta_K(t) = 3t + k + 3t^{-1}.
\]