Throughout, B_n is the braid group on n strands and if β is a braid then $C(\beta)$ denotes its braid closure.

Exercise 5.1. Name $C(\sigma_1\sigma_2^{-1}\sigma_1\sigma_2^{-1})$, $C(\sigma_1\sigma_2^{-1}\sigma_1\sigma_2^{-1}\sigma_1\sigma_2^{-1})$ and $C(\sigma_1\sigma_2^{-1}\sigma_1\sigma_2^{-1}\sigma_2^{-1})$.

Exercise 5.2. In B_2, for what values of m and n is $C(\sigma_1^n) \simeq C(\sigma_1^m)$?

Exercise 5.3. Give a necessary and sufficient condition on β that $C(\beta)$ is a knot (and not a link).

Exercise 5.4. Find a braid β such that $C(\beta)$ is the 6_1 knot, shown below.

![Image of the 6_1 knot]

Exercise 5.5. For braids $\beta \in B_n$ and $\beta' \in B_n$, find a braid whose closure is $C(\beta) \# C(\beta')$.

Exercise 5.6. Give an infinite sequence of pairwise distinct braids whose braid closure is the figure 8 knot.

Exercise 5.7. Show that $\Delta \in B_n$, shown below for the case $n = 4$, is in $Z(B_n)$, the center of the braid group.

![Image of the 4-strand braid Δ]