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Abstract

This is the second of three papers about the Compression Theorem. We
give proofs of Gromov’s theorem on directed embeddings [1; 2.4.5 (C′)]
and of the Normal Deformation Theorem [3; 4.7] (a general version of the
Compression Theorem).
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1 Introduction

This is the second of three papers about the Compression Theorem. The first
paper [3] contains a proof of the theorem using an explicit vector field argu-
ment. This paper contains one simple piece of geometry, rippling, which proves
the “flattening lemma” stated below. This leads to proofs of Gromov’s the-
orem on directed embeddings [1; 2.4.5 (C′)] and of the Normal Deformation
Theorem [3; 4.7] (a general version of the Compression Theorem which can be
readily deduced from Gromov’s theorem). The third paper [4] is concerned with
applications.

We work throughout in the smooth (C∞ ) category and we shall assume without
comment that all manifolds are equipped with appropriate Riemannian metrics.
The tangent bundle of a manifold W is denoted TW . Suppose that Mn is
smoothly embedded in Qq × Rt where q ≥ n. We think of Rt as vertical and
Q as horizontal. We say that M is compressible if it is nowhere tangent to
vertical, or equivalently, if projection p on Q takes M to an immersion in Q.
Throughout the paper, “normal” means independent (as in the usual meaning
of “normal bundle”) and not necessarily perpendicular.

Let G = Gn(Qq×Rt) denote the Grassmann bundle of n–planes in T (Qq×Rt)
and define the horizontal subset H of G to comprise n–planes with no vertical
component. In other words H comprises n–planes lying in fibres of p∗TQ.

1



Flattening lemma Suppose that Mn is compressible in Qq × Rt and that
U is any neighbourhood of H in G. Suppose that q − n ≥ 1 then there is a
C0–small isotopy of M in Q carrying M to a position where TM ⊂ U .

We think of planes in H as flat and planes in U as almost flat. So the lemma
moves M to a position where it is almost flat (ie, its tangent bundle comprises
almost flat planes). Obviously it is in general impossible to move M to a
position where it is completely flat.

Addenda

(1) The lemma is also true if q = n and each component of M is either open
or has boundary. However in this case the isotopy is not C0–small, but of the
form “shrink to a neighbourhood of a (chosen) spine of M followed by a small
isotopy”. We call such an isotopy “pseudo-small”; a pseudo-small isotopy has
support in a small neighbourhood of the original embedding.

(2) The lemma has both relative and parametrised versions: If M is already
almost flat in the neighbourhood of some closed subset C of M then the isotopy
can be assumed fixed on C . Further given a family of compressible embeddings
of M in Q parametrised by a manifold K , then there is a K–parametrised fam-
ily of small isotopies of M in Q carrying TM ×K into a given neighbourhood
of H ×K .

(3) In the non-compact case smallness can be assumed to vary. In other words,
during the isotopy, points move no further than ε > 0, which is a given function
of M (or M ×K in the parametrised version).

2 The proof of the flattening lemma

The process is analogous to the way in which a road is constructed to go up a
steep hill. Hairpin bends are added (which has the effect of greatly increasing
the horizontal distance the road travels) and this allows the slope of the road
to become as small as necessary.

The process of adding hairpin bends is embodied in the “ripple lemma” which
we state and prove first. The flattening lemma follows quickly from the ripple
lemma.

Let M be connected and smoothly immersed in Q. Suppose that Q has a
Riemannian metric d. Define the induced Riemannian metric denoted dM (x, y)
on M by restricting to TM the form on TQ which defines d.
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If M is embedded in Q then we also have the usual induced metric on M
(ie d restricted to M ). The two induced metrics coincide to first order for
nearby points but in general the induced metric is smaller than the induced
Riemannian metric.

Ripple lemma Suppose that M is smoothly embedded in Q and that q−n ≥
1 and that R, ε > 0 are any given real numbers. Then there is an isotopy of
M in Q which moves points at most ε such that the finishing diffeomorphism
f : M → f(M) has the following property:

df(M)(f(x), f(y)) > RdM (x, y) for all x, y ∈M (∗)

Thus the ripple lemma asserts that we can (by a small isotopy) arrange for
distances of points (measured using the induced Riemannian metric from Q)
to be scaled up by as large a factor as we please. The proof is to systematically
“ripple” the embedding, hence the name.

Proof We deal first with the case when Q is the plane and M is the unit
interval [0, 1] in the x–axis, so n = 1 and q = 2. We will work relative to the
boundary of M ; in other words the isotopy we construct will be fixed near 0
and 1 and the scaling up will work for points outside a given neighbourhood of
{0, 1}.
Consider a sine curve S of amplitude A and frequency ω (the graph of y =
A sin(2πωx)). Think of ω as large and A as small. So the curve is a small
ripple of high frequency. Use a C∞ bump function to phase S down to zero
near x = 0 and x = 1. See figure 1.

0 1

Figure 1: The basic ripple

Clearly M can be replaced by S via an isotopy which moves points at most
A + 1

ω . Further we can choose this isotopy to finish with a diffeomorphism
which nowhere shrinks distances, is fixed near {0, 1}, and which outside a given
neighbourhood of {0, 1} scales length up (measured in M ) by a constant scale
factor.

But the length of S is greater than 4Aω since the distance along the curve
through one ripple is greater than 4A. Thus by choosing A sufficiently small
and then choosing ω sufficiently large the lemma is proved (relative to the
boundary) in this special case.
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For future reference, we shall denote the 1–dimensional rippling diffeomorphism,
just constructed, by r . Or to be really precise, we use r to denote this rippling
diffeomorphism without phasing out near {0, 1}.
For the general case, we use induction on a handle decomposition of M . Here is
a slightly inaccurate sketch of the procedure. At each step of the induction we
move one handle keeping fixed the attaching tube. The handle gets replaced by a
neighbourhood of its core (and there is a compensatory enlargement of handles
attached onto it) otherwise the decomposition remains fixed throughout the
induction. For each handle in turn we think of the core as a cube, choose one
direction in the cube and one direction perpendicular to the core. Then, using
the model in R2 just given, we ripple the chosen direction in the core, crossing
with the identity on other coordinates and phasing out near the boundary of
the core. Then we choose another direction in the cube and repeat this move.
This has the effect of creating perpendicular, and smaller, ripples on top of
the ripples just made (figure 2). We repeat this for each direction in the cube
and the end result is that all distances (in the core) are scaled. We then scale
distances in the handle near the core by expanding a very small neighbourhood
of the core onto a small one. Finally we redefine the handle to lie inside the very
small neighbourhood (changing the handle decomposition of M ) and proceed
to the next handle.

Figure 2: The effect of two successive ripples in the middle of the core

The model

For the details, let Ij be the standard j–cube in Rj . We shall construct a
model ripple rj of Ij in Ij ×R by using the standard 1–dimensional ripple r ,
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defined earlier, j times. Let T be a given constant and let Ij0 ⊂ intIj be a
given concentric copy of Ij . Let φ be a bump function which is 1 on Ij0 and 0
outside a compact subset of intIj .
For each t = 1, 2, . . . , j we perform the following inductive move. Starting with
t = 1 we ripple Ij by using r on the first coordinate and the identity on the
remaining j − 1 and phase out by using φ. We choose the parameters for r
to scale distances by the the given constant T . This defines a subset Ij1 of
Ij×R and a diffeomorphism r1: Ij → Ij1 which stretches distances in Ij0 in the
direction of the first coordinate by the factor T . Now suppose inductively that
rt−1: Ij → Ijt−1 has been defined. Choose a small orthogonal normal bundle on
Ijt−1 in Ij×R and use this and rt−1 to identify a neighbourhood U of Ijt−1 with
Ij×V where V is an open interval in R containing 0. Using this identification
define st: I

j
t−1 → U by using exactly the same construction as used for r1 , but

replacing the first coordinate by the tth and choosing the height of the sine
function sufficently small that the image lies in U , and adjusting the frequency
so that the scale factor is again T . Define Ijt = st(I

j
t−1) and rt = st ◦ rt−1 .

Now throughout this inductive process, the coordinate system for rt(Ij), com-
ing from the standard coordinate system for Ij , remains perpendicular on Ij0 .
It follows that rj scales all distances in Ij0 by factor approximately T . The
reason why the factor is not exactly T is because, after the first ripple, Ij1 is not
flat. Hence there is a shrinkage effect because moving out in the R–direction
can move points closer together. By choosing U sufficiently small, this effect
can be made as small as we please. Hence all distances in Ij0 are stretched by
a factor, which may vary with direction, but which is uniformly as close as we
like to T .
Another effect occurs outside Ij0 . Here the non-constant scaling in say the first
coordinate (due to the phasing to zero using φ) causes the second coordinate
system to become non-perpendicular and hence the second scaling may in fact
shrink some distances. But it can be checked that this shrinking is by a factor
≥ sin(α) where α is the minimum angle between the images of two lines at
right angles. But by choosing the size of all the ripples to be small compared
to the distance between ∂Ij0 and ∂Ij (in other words the distance over which
φ varies) the distortion in the coordinate system can be made as small as we
please and hence sin(α) chosen as near as we like to 1. The way to think of
this is that we are using small ripples whose height varies over a much larger
scale. Thus by choosing the parameters carefully we can assume that, in the
model ripple rj , all distances in Ij0 are scaled up by factor as close to T and as
nearly independent of direction as we please. Outside Ij0 distances are scaled
up by a factor which varies from point to point, but which, at a given point is
again as nearly independent of direction as we please.
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This completes the construction of the model.

Now to prove the lemma choose a finite (or locally finite) handle decomposition
of M and suppose that M1 = M0 ∪hj (where hj is a handle of index j ). Sup-
pose inductively that for given δ > 0 we have constructed an isotopy finishing
with a diffeomorphism f0 which moves points at most δ such that property (∗)
holds near M0 with f0 in place of f .

Now choose a diffeomorphism g of intIj with the core of hj minus attaching
tube and let Ij0 be chosen so g(intIj − Ij0) is contained in the neighbourhood
of M0 where (∗) already holds. Choose a small orthogonal line bundle ζ on hj
minus attaching tube in Q and use this to extend g to an embedding of intIj×V
where V is an open interval in R containing 0. Define f1 to be g ◦ rj ◦ g−1 ,
where rj is the model ripple contructed above. Then, by choosing T sufficiently
large (noting that the directional derivatives of g are bounded on a compact
subset of intIj ), f1 satisfies property (∗) for points in a neighbourhood of M0

and in the core. There is again a shrinkage effect due to the fact that hj is not
flat (hence moving out along ζ can move points closer together). By choosing
ζ sufficiently small, this effect can again be made as small as we please. To
stretch distances perpendicular to the core in the handle we choose a small
neighbourhood V of the core containing a much smaller neighbourhood V ′ .
Then the isotopy which expands V ′ onto V stretches distances perpendicular
to the core. Finally we change the handle decomposition of M by redefining hj
to lie inside V ′ (this could be done by a diffeomorphism of M and hence defines
a new decomposition). We now have property (∗) in a neighbourhood of M1 .
Note that the finite number of small moves used on hj can be assumed to move
points at most any given δ′ . Thus by choosing successive moves bounded by a
sequence which sums to less than ε, lemma is proved by induction.

Addenda The proof of the ripple lemma leads at once to various extensions:

(1) There is a codimension 0 version (ie q = n) as follows. Let X be a spine of
M . Choose a handle decomposition with cores lying in X and no n–handles.
Apply the proof to this decomposition. We obtain a neighbourhood N of X in
M and a small isotopy of N in Q such that (∗) holds in N .

(2) In the non-compact case we can assume that R and ε are arbitrary positive
functions. (This follows at once from the local nature of the proof.)

(3) The proof gives both relative and parametrised versions. In the relative
version we can assume that the isotopy is fixed on some closed subset and
obtain (∗) outside a given neighbourhood of C . (This follows at once from
the method of proof.) In the parametrised version we are given a family of
embeddings parametrised by a manifold K and obtain a K–parameter family

6



of small isotopies such that (∗) holds for each finishing embedding, where both
R and ε are functions of K . To see this, we use the same scheme of proof but
at the crucial stage we choose a diffeomorphism of a neighbourhood of (the core
of hj) × K in Q × K with a neighbourhood of Ij × K in Rq × K . We then
use the same model rippling move over each point of K varying the controlling
parameters appropriately. The rest of the proof goes through as before.

(4) Since the process is local, there is an immersed version of the lemma in
which M is immersed in Q and a regular homotopy is obtained. Further all
these extensions can be combined in obvious ways.

Proof of the flattening lemma We can now deduce the flattening lemma.
What we do is ripple the horizontal coordinate using the immersed version of
the ripple lemma. This has the effect that horizontal distances are all scaled
up. We leave the vertical coordinate fixed. The embedding is now as flat as we
please. The addenda to the flattening lemma follow from the addenda to the
ripple lemma given above.

In order to prove the Normal Deformation Theorem (in the next section) we
shall need a bundle version of the lemma:

Bundle version of the flattening lemma Suppose that Mn ⊂W t+q where
q − n ≥ 1 and TW contains a subbundle ξt (thought of as vertical) such that
ξ|M is normal to M . Let H (the horizontal subset) be the subset of Gn(W ) of
n–planes orthogonal to ξ . Then given a neighbourhood U of H in Gn(W ) there
is a C0–small isotopy of M in Q carrying M to a position where TM ⊂ U .

Proof Use a patch by patch argument. Approximate locally as a product
Rt×patch and use the (relative) Rt version.

Remarks (1) There are obvious extensions to the bundle version correspond-
ing to the extensions to the Rt version. For the proofs we use a similar patch
by patch argument together with the appropriate extension of the Rt version.

(2) Rippling has been used on occasions by several previous authors, in par-
ticular Kuiper used it (together with some sophisticated estimates) to prove his
version of the Nash isometric embedding theorem [2].
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3 Normal deformations and Gromov’s theorem

Gromov’s theorem asserts (roughly) that if M ⊂ W and the tangential infor-
mation is deformed within a neighbourhood of M (ie, TM is deformed as a
subbundle of TW ) then the deformation can be followed within a neighbour-
hood by an isotopy of M in W . We shall prove the theorem in the following
equivalent normal version (ie, M follows a deformation of a bundle normal to
M in W ). The normal version follows quickly from a repeated application of
the flattening lemma. We shall give a precise statement (and deduction) of
Gromov’s theorem after this version.

Normal Deformation Theorem Suppose that Mn ⊂ Ww and that ξt is
a subbundle of TW defined in a neighbourhood U of M such that ξ|M is
normal to M in W and that t+ n < w . Suppose given ε > 0 and a homotopy
of ξ through subbundles of TW defined on U finishing with the subbundle ξ′ .
Then there is an isotopy of M in W which moves points at most ε moving M
to M ′ so that ξ′|M ′ is normal to M ′ in W .

Proof Suppose first that M and U are compact. It follows that the total
angle that the homotopy of ξ moves planes is bounded and we can choose r
and a sequence of homotopies ξ = ξ0 ' ξ1 ' . . . ' ξr = ξ′ so that for each
s = 1, . . . , r − 1 the planes of ξs−1 make an angle less than π/4 with those of
ξs . We apply (the bundle version of) the flattening lemma r + 1 times each
time moving points of M at most ε

r+1 . Start by flattening M to be almost
perpendicular to ξ = ξ0 . Then ξ1 is now normal to M and we flatten M to be
almost perpendicular to ξ1 . ξ2 is now normal to M and we flatten M to be
almost perpendicular to ξ2 etc. After r + 1 such moves M has been moved to
M ′ say which is almost perpendicular to ξr = ξ′ and in particular is normal to
it.

For the non-compact case, argue by induction over a countable union of compact
pieces covering M .

Addenda

The proof moves M to be almost perpendicular to ξ′ (not just normal). Further
it can readily be modified to construct an isotopy which “follows” the given
homotopy of ξ , in other words if ξi is the position of ξ at time i in the homotopy
and Mi the position of M at time i in the isotopy, then ξi|Mi is normal to
Mi for each i. To see this reparametrise the time for the isotopy so that the
flattening of M with respect to ξi takes place near time i

r . This produces a
rather jerky isotopy following the given bundle homotopy but by breaking the
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homotopy into very small steps, the isotopy becomes uniform and furthermore
(apart from the initial move to become almost perpendicular to ξ ) Mi is almost
perpendicular to ξi throughout.

There are obvious relative and parametrised versions similar to those for the
flattening lemma (and proved using those versions), and furthermore we can
assume that ε is given by an arbitrary positive function in non-compact cases.
Finally there is a codimension 0 (t+ n = w) version which it is worth spelling
out in detail, since this is the version that implies Gromov’s theorem:

Suppose in the Normal Deformation Theorem that t + n = w and that M is
open or has boundary and that X is a spine of M . Then there is an isotopy of
M of the form: shrink into a neighbourhood of X followed by a small isotopy
in W , carrying M to be almost perpendicular to ξ′ .

Gromov’s Theorem [1; 2.4.5 (C′), page 194] Suppose that Mn ⊂ Ww

and suppose that M is either open or has boundary and that we are given a
deformation of TM over the inclusion of M to a subbundle η of TW . Then
there is an isotopy of M carrying TM into a given neighbourhood of η in the
Grassmannian Gn(W ).

Proof Let ξ be the orthogonal complement of TM in TW . Then the defor-
mation of TM gives a deformation of ξ to ξ′ say. Pulling the bundles back
over a neighbourhood of M gives the hypotheses of the Normal Deformation
Theorem (codim 0 case above). The conclusion is the required isotopy.

Final remarks It is easy to reverse the last argument and deduce the Normal
Deformation Theorem from Gromov’s Theorem.

Another proof of the Normal Deformation Theorem is given in [3] as an exten-
sion of the arguments used to prove the Compression Theorem. The proofs in
[3] are quite different in character from those presented here. We think of the
bundles locally as defined by independent vector fields and define flows by ex-
tending these vector fields in an explicit fashion. The resulting embeddings are
far more precisely defined: indeed instead of a multiplicity of ripples, there is
in the simplest case a single twist created around a certain submanifold which
we call the downset. For details here see the pictures in section 3 and the
arguments in section 4 of [3].

We are very grateful to both Yasha Eliashberg and the referee for comments
which have greatly improved the clarity of the proof of the ripple lemma.
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