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Abstract

This is the third of three papers about the Compression Theorem: if Mm

is embedded in Qq ×R with a normal vector field and if q−m ≥ 1, then
the given vector field can be straightened (ie, made parallel to the given
R direction) by an isotopy of M and normal field in Q× R.

The theorem can be deduced from Gromov’s theorem on directed em-
beddings [4; 2.4.5 (C′)] and the first two parts gave proofs. Here we are
concerned with applications.

We give short new (and constructive) proofs for immersion theory and
for the loops–suspension theorem of James et al and a new approach to
classifying embeddings of manifolds in codimension one or more, which
leads to theoretical solutions.

We also consider the general problem of controlling the singularities of a
smooth projection up to C0 –small isotopy and give a theoretical solution
in the codimension ≥ 1 case.

AMS Classification 57R25, 57R27, 57R40, 57R42, 57R52; 57R20,
57R45, 55P35, 55P40, 55P47

Keywords Compression, embedding, isotopy, immersion, singularities,
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1 Introduction
We work throughout in the smooth (C∞ ) category. Embeddings, immersions,
regular homotopies etc will be assumed either to take boundary to boundary
or to meet the boundary in a codimension 0 submanifold of the boundary.
Thus for example if f : M → Q is an immersion then we assume that either
f−1∂Q = ∂M or f−1∂Q is a codimension 0 submanifold of ∂M . In the
latter case we speak of M having relative boundary. The tangent bundle of
a manifold W is denoted T (W ) and the tangent space at x ∈ W is denoted
Tx(W ). Throughout the paper, “normal” means independent (as in the usual
meaning of “normal bundle”) and not necessarily perpendicular.
This is the third of a set of three papers about the following result:
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Compression Theorem Suppose that Mm is embedded in Qq × R with a
normal vector field and suppose that q −m ≥ 1. Then the vector field can be
straightened (ie, made parallel to the given R direction) by an isotopy of M
and normal field in Q× R.

Thus the theorem moves M to a position where it projects by vertical projection
(ie “compresses”) to an immersion in Q.

The theorem can be deduced from Gromov’s theorem on directed embeddings
[4; 2.4.5 (C′)]. Proofs are given in parts I and II [14, 15].

Immersion theory [5, 17] implies the embedding is regularly homotopic to an
immersion which covers an immersion in Q and using configuration space mod-
els of multiple-loops-suspension spaces [6, 11, 12, 16] it can be seen that the
embedding is bordant (by a bordism mapping to M ) to an embedding which
covers an immersion in Q, see [9]. Thus the new information which the com-
pression theorem provides is that the embedding is isotopic to an embedding
covering an immersion in Q. Moreover we can apply the compression theorem
to give short and constructive proofs for both immersion theory and configura-
tion space theory.

The Compression Theorem also sheds light on the following problem:

C0–Singularity Problem Given M ⊂ W and p : W → Q a submersion,
how much control do we have over the singularities of p|M if we are allowed a
C0–small isotopy of M in W ?

The problem includes the problem of controlling the singularities of a map
f : M → Q by a C0–small homotopy. This is because we can always factor f
as f × q : M ⊂ Q× Rt proj−→ Q where q : M → Rt is an embedding.

The Compression Theorem gives a necessary and sufficient condition for desin-
gularising the projection in the case that dim(W ) = dim(Q)+1 and dim(M) <
dim(Q), namely that there should exist an appropriate normal line field, and it
can be extended to give necessary and sufficient conditions for singularities of
almost any pre-specified type, namely that there should exist a line field with
those singularities. Both these results extend to the case with just the hypoth-
esis dim(M) < dim(Q) where “line field” is replaced by “plane field”. They
also have natural relative and parametrised versions.

It is worth contrasting these results with the C∞–singularity problem (“C0 –
small” is replaced by “C∞–small”) where there is the classical Thom–Boardman
classification of C∞–stable singularities [1]. For most topological purposes (eg
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for applications to homotopy theory) the C0 classification is more natural than
the classical C∞ classification. Furthermore essential singularities (up to C0

homotopy) have natural interpretations as generalised bordism characteristic
classes similar to those investigated by Korschorke [7] (see section 5).

Our methods also give information in the negative codimension case (ie where
dim(M) ≥ dim(Q)) which will be investigated in a future paper. See also
Spring [18].

Two examples of immediate application of the compression theorem are the
following:

Corollary 1.1 Let π be a group. There is a classifying space BC(π) such
that the set of homotopy classes [Q,BC(π)] is in natural bijection with the
set of cobordism classes of framed submanifolds L of Q× R of codimension 2
equipped with a homomorphism π1(Q× R− L)→ π .

Corollary 1.2 Let Q be a connected manifold with basepoint ∗ and let
M be any collection of disjoint submanifolds of Q − {∗} each of which has
codimension ≥ 2 and is equipped with a normal vector field. Define the vertical
loop space of Q denoted Ωvert(Q) to comprise loops which meet given tubular
neighbourhoods of manifolds in M in straight line segments parallel to the
given vector field. Then the natural inclusion Ωvert(Q) ⊂ Ω(Q) (where Ω(Q)
is the usual loop space) is a weak homotopy equivalence.

Proofs The first corollary is a special case of the classification theorem for
links in codimension 2 given in [3; theorem 4.15], the space BC(π) being the
rack space of the conjugacy rack of π . To prove the second corollary suppose
given a based map f : Sn → Ω(Q) then the adjoint of f can be regarded as a
map g: Sn×R→ Q which takes the ends of Sn×R and {∗}×R to the basepoint.
Make g transverse to M to create a number of manifolds embedded in Sn×R
and equipped with normal vector fields. Apply the compression theorem to
each of these (the local version proved in section 4 of this paper). The result
is to deform g into the adjoint of a map Sn → Ωvert(Q). This shows that
Ωvert(Q) ⊂ Ω(Q) induces a surjection on πn . A similar argument applied to
a homotopy, using the relative compression theorem, proves injectivity. (The
vertical loop space is introduced in Wiest [20]; for applications and related
results see [20, 21].)

More substantial applications are given in sections 1 (immersion theory), section
2 (loops–suspension theory), section 3 (embeddings and knots) and section 4
(simplifying singuratities).

We would like to thank Bert Wiest for observing corollary 1.2 and Yasha Eliash-
berg for helpful comments on previous versions of this paper.
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2 Immersion theory

In the compression theorem, the existence of the immersion of M in Q follows
from immersion theory; however immersion theory gives us no explicit informa-
tion about this immersion, which is only determined up to regular homotopy.
By contrast the compression theorem gives us an explicit description of the
immersion in terms of the given embedding and normal vector field in Q× R.
Moreover the compression theorem can be used to give a new proof for immer-
sion theory as we now show. We start by proving the simplest statement of
immersion theory and then develop the proof into a full statement.

Let M be an n–manifold. We shall explicitly describe a way of rotating the
fibres of the tangent bundle TM into M . Regard the zero section M as ‘ver-
tical’ and the fibres as ‘horizontal’. Consider TM as a smooth 2n–manifold,
then its tangent bundle restricted to M is the Whitney sum TM ⊕ TM . The
two copies of TM are the vertical copy parallel to M and the horizontal copy
parallel to the fibres of TM . Each vector v ∈ TM then determines two vectors
vv and vh in TM ⊕ TM which span a plane. In this plane we can ‘rotate’
vh to vv . Since we are not at this moment considering a particular metric
‘rotation’ needs to be defined: to be precise we consider the family of linear
transformations of this plane given by

2.1 vh 7→ cvh + svv, vv 7→ cvv − svh where

c = cos π2 t, s = sin π
2 t, 0 ≤ t ≤ 1.

This formula (applied to each such plane) determines a bundle isotopy (a 1–
parameter family of bundle isomorphisms) which is the required rotation of the
fibres of TM into M .

Simple Immersion Theorem 2.2 Suppose that we are given a bundle
monomorphism f : TM → TQ (ie, a map M → Q covered by a vector space
monomorphism on each fibre) and that either q − m ≥ 1 or q − m ≥ 0 and
each component of M has relative boundary. Then the restriction f |: M → Q
is homotopic to an immersion.

Proof Composing f with an exponential map for TQ gives a map g: TM → Q
which embeds fibres into Q. Choose an embedding q: M → Rn for some n and
also denote by q the map TM → Rn given by projecting the bundle TM onto
M (the usual bundle projection) and then composing with q . We then have
the embedding g× q: TM → Q×Rn . The fibres of TM are embedded parallel
to Q and the n directions parallel to the axes of Rn determine n independent
vector fields at M normal to the fibres of TM .
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Now choose a complement for T (TM) |M ∼= TM⊕TM in T (Q×R) |M . Then
the rotation of the fibres of TM into M (formula 2.1 above) extends (by the
identity on the complement) to a bundle isotopy of T (Q×R) |M which carries
the these n fields normal to M to yield n independent normal fields. The result
now follows from the multi-compression theorem in part I [14; corollary 4.5].

The proof of the simple immersion theorem just given is very explicit, which
contrasts with the standard Hirsch–Smale approach [5, 17] or the proofs given
by Gromov [4]. Given a particular bundle monomorphism TM → TQ the
proof can be used to construct a homotopic immersion M → Q. The only
serious element of choice in the proof is the embedding of M in Rn . It is worth
remarking that Eliashberg and Gromov [2; Theorem 4.3.4] have also given a
short proof of immersion theory which yields an explicit immersion.

We now extend the proof to give a parametrised version. The usual statement
of immersion theory will follow easily. Notice that, in the proof just given, there
was an explicit bundle homotopy of the n independent normal fields to M to
the vertical fields. Thus using the Normal Deformation Theorem in place of the
multi-compression theorem, there is an immediate parametrised version of the
proof. However, it is worth repeating the proof to construct the parametrised
version because it can be done in a particularly explicit fashion.

Let F : K × M → Q be a smooth map such that F | {t} × M → Q is an
immersion for each t ∈ K , where K is a smooth manifold. Call such a map a
K–family of immersions of M in Q. There is a similar notion of a K–family
of bundle monomorphisms G: K×TM → TQ. Given an immersion f of M in
Q then the derivative Tf of f is a bundle monomorphism. By differentiating
a K–family F of immersions for each t ∈ K we obtain a K–family of bundle
monomorphisms which we denote TF .

Full Immersion Theorem 2.3 Let K,M,Q be smooth manifolds and sup-
pose q−m ≥ 1. Suppose G: K×TM → TQ is a K–family of bundle monomor-
phisms then there is a K–family of immersions F : K ×M → Q such that TF
is homotopic to G through bundle monomorphisms.

Proof We construct F as in theorem 2.2 but using the parametrised version
of the multi-compression theorem. (The parameter space K plays no real rôle
in the proof and we shall not mention it again.) The only point that needs to
be checked is that the vector fields are grounded as we come to them and can
therefore be straightened inductively.

The following considerations explain why the fields start grounded. We choose
metrics so that distances in Rn are very large compared to distances in Q.
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This means that the embedding of M in Q × Rn is roughly parallel to Rn .
Number the fields 1 to n corresponding to the n coordinate axes in Rn and
say that field i is grounded if it is never parallel to the negative i–axis. Now
before the rotation of the fibres of TM into M , the fields are all parallel to
the corresponding positive axes. To produce a point where field i say is not
grounded requires a rotation of that field through π . But the rotation of the
fibres of TM into M is close to a genuine metric rotation through π/2, which
is not far enough to unground one of our vector fields, which are therefore all
grounded before we start to compress. So we just have to make sure that each
compression maintains the property that subsequent fields are grounded.

To see this we shall modify the method of producing the initial n normal fields
so that the fields start independent and normal and with each field nearly
straight (ie, field i makes a small angle with the positive i–axis for each i). We
then straighten the fields in turn making sure that the straightening process
disturbs the angles of subsequent fields only a little. This means that after
each straightening subsequent fields are still nearly straight and the process
continues.

So we start by finding the n independent, normal, nearly straight fields. Sup-
pose given a real number µ > 0. Then we can choose the scale factor for
distances in Rn compared to those in Q to be sufficiently large so that the
following is true. Consider a point x ∈ M and consider rotation of the fibres
of TM through an ‘angle’ π/2 − µ (ie, use formula 2.1 with t = 1 − 2µ/π).
If {v1, . . . , vm} is a basis for TxM (in this partially rotated position) and if
{e1, . . . , en} is standard basis for TxRn , then the vectors {v1, . . . , vm, e1, . . . , en}
will form an (n+m)–frame at x.

Now finish the rotation of the fibres of TM into M (ie, apply the linear trans-
formation given by formula 2.1 with t = 2µ/π) and extend to a bundle iso-
morphism of T (Q×R) |M by using the orthogonal complement of TM ⊕ TM
in T (Q × R) |M . Let this extension carry {e1, . . . , en} to {f1, . . . , fn} say.
Then {f1, . . . , fn} are independent, normal to M at x and nearly parallel to
{e1, . . . , en}. Doing the same manoeuvre at each point of M constructs the
required normal fields.

Now comes the only subtle point in the argument. We are inductively straight-
ening nearly straight fields. This can be done by a small isotopy using the
global proof given in section 2. However there is no reason to assume that this
isotopy will be small enough. Note that the multi-compression theorem uses the
local compression theorem since it is applied inside an induced regular neigh-
bourhood and, as we proceed with our inductive straightening process, these
induced neighbourhoods may become truly tiny. So we have to check that the

6



property that fields remain nearly straight is not disturbed by application of
the local proof of the compression theorem.

Look carefully at the proof of the Local Compression Theorem [14; 4.4]. It starts
with a perpendicular vector field. Suppose that ρ is the given nearly straight
field which we intend to straighten. Let α be the corresponding perpendicular
field (obtained by othogonalising ρ with respect to TM ), and let β be the
result of upward rotation applied to α.

Now β and ρ both make an angle less than π/2 with α which is perpendicular
to M . It follows from elementary spherical geometry that the straight line
isotopy which moves ρ to β is disjoint from M . Moreover by definition of
upwards rotation, β is at least as close to vertical as ρ. Thus by an isotopy
through nearly straight fields, we may assume that our given field is obtained
by upwards rotation of a perpendicular field.

We now apply the proof of the Local Compression Theorem [14; 4.4] to α and
watch the effect on β . We observe that all the moves on α in the proof are small
general position moves except one—localisation. But by definition localisation,
if it moves α at all, moves it upwards to some extent (ie, increases its vertical
component). It can then be seen that the effect on β is also to move it upwards
in the same sense. Thus β moves through nearly straight fields. Figure 1
illustrates the case when α is on the downset D (and hence β = ρ) and β is
unchanged by localisation.

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppppppp ppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppppppp
....................................................................................................................................................................................................................................................................................................

M

α

β = ρ

Figure 1

In general you can imagine localisation rotating α around (and upwards) in
the plane perpendicular to M and β following the movement on a small cone
around M .
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It is now clear that the field used to generate the isotopy which straightens β is
roughly as nearly straight as the original field and therefore the whole process
leaves the subsequent fields nearly straight.

Finally, we need to prove that TF is homotopic to G through bundle monomor-
phisms. But the construction provides a homotopy through bundle monomor-
phisms of TM in T (Q × Rn) ∼= TQ ⊕ TRn and moreover, by considering the
n normal fields, we actually have a homotopy through bundle monomorphisms
h, say, of TM ⊕ TRn in TQ ⊕ TRn which starts with G ⊕ id and ends with
a monomorphism J say, which is the derivative of the final parallel embedding
extended by the normal fields. Thus J |TRn = id and projection on Q carries J
to TF . But since the n normal fields stay close to TRn , h|TRn can be canon-
ically homotoped to the constant homotopy. Extend this canonical homotopy
to a homotopy of h by choosing a complement for the image and the result is a
homotopy h′ between G⊕ id and J which is fixed on TRn . Projecting h′ on
TQ gives the required homotopy between G and TF .

Addenda

(1) (Relative version) Let K0,M0 be submanifolds of K,M of codimension
0. Suppose given a K0 –family F of immersions of M in Q with extension (also
denoted F ) to a K–family of immersions of M0 in Q. Suppose that TF extends
to a K–family G of bundle monomorphisms of TM in TQ. Then F extends
to a K–family F+ of immersions of M in Q such that TF+ is homotopic
through K–families of bundle monomorphisms to G and the homotopy is fixed
where TF is defined (and equal to G).

(2) (Codimension zero version) Addendum (i) holds if q −m ≥ 0 and each
component of each component of M −M0 has relative boundary not in M0 .

Proof We first observe that if f : M → Q is an immersion and we apply
the proof of 2.3 to Tf then the immersion constructed is precisely f . This
is because the rotation of fibres of TM into M is in fact through less than a
right-angle and the nearly straight fields constructed in 2.3 are actually straight.
Moreover the homotopy constructed at the end of the proof is the constant
homotopy in this case. Addendum (1) now follows from the main proof and
addendum (2) follows by a handle decomposition argument as in addendum (ii)
to the Local Compression Theorem [14; 4.4].

Corollary 2.4 (Immersion theory) Let f : M0 → Q be an immersion then
differentiation T induces a weak homotopy equivalence between the spaces of
immersions of M in Q equal to f on M0 and of bundle monomorphisms from
TM to TQ equal to Tf on TM0 .
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Proof Apply addendum (1) to 2.3 with K = Sn to see that T∗ is surjective
on πn and again with K = Sn × R and K0 = Sn × ((−∞, 0] ∪ [1,∞)) to see
that T∗ is injective.

The corollary yields the usual classification of immersions: regular homotopy
classes of immersions of M in Q are in bijection with homotopy classes of
tangential maps TM to TQ. Again the proof is explicit. Given two immersions
and a homotopy between the tangential maps the proof constructs a regular
homotopy between the given immersions. Thus it can be used, for example, to
describe an explicit way to turn the 2–sphere inside out in R3 and we intend
to give such an explicit description in a separate paper. In this description
we start from an explicit homotopy of bundle monomorphisms and an explicit
embedding (the usual one) in R3 . Then the proof provides a sequence of three
flows which integrate to give the regular homotopy which turns the sphere inside
out.

3 Loops–suspension theorem

We next show that the compression theorem can be used to give a short
new proof of the classical result of James [6] on the homotopy type of loops–
suspension and of the generalisation due to May [11] and Segal [16] and implicit
in Milgram [12]. In [13] the arguments in this section are extended to both
the equivariant case and the disconnected case (where group completions are
needed).

We denote the free topological monoid on a based space X by X∞ and denote
the loop space on and suspension of X by Ω(X), S(X), respectively. We as-
sume spaces are compactly generated and Hausdorff and we assume base points
non-degenerate. In particular this means (up to homotopy) we can assume
based spaces have whiskers, ie, the base point has a neighbourhood homeomor-
phic to {1} in the interval [0, 1]. It will be convenient to identify the whisker
with [0, 1].

There is a map kX : X∞ → ΩS(X) defined in [6]. Briefly, what kX does is to
map the word x1 · · · xm to a loop in S(X) which comprises m vertical loops
passing through x1, . . . , xm respectively, with the time parameters carefully
adjusted to make the time spent on a subloop go to zero as the corresponding
point xi moves to the basepoint of X .

Theorem 3.1 Let X be path-connected. Then kX : X∞ → ΩS(X) is a weak
homotopy equivalence.

9



Proof There is a well-known equivalent definition of X∞ (up to homotopy
type) as the configuration space C1(X) of points in R1 labelled in X , of which
we briefly recall the definition. Consider finite subsets of R1 labelled by points
of X . An equivalence relation on such subsets is generated by deleting points
labelled by the basepoint. C1(X) is the set of equivalence classes. The topology
is induced from the topologies of R1 and X .

We shall give a geometric description for the homomorphism πn(C1X) →
πn(ΩSX) induced by kX . The construction is similar to a construction in [9],
which used transversality to the base of a Thom space. Here we use transver-
sality to X in X × R and to an interior point of the whisker in X .

We start by giving a geometric description for a map into C1(X). Let Q be a
smooth manifold and f : Q → C1(X) a map. Then f determines a subset of
Q × R1 , continuously labelled by X , such that at points labelled in X − {∗}
the projection on Q is a local homeomorphism. This subset is determined up
to introduction and deletion of points labelled by ∗. By approximating the
local map to R1 by a smooth map, we can assume, by a small homotopy of
f , that the subset of points labelled in X − {∗} is a smooth submanifold of
Q × R. Further, by using transversality of the labelling map to an interior
point 1

2 in the whisker in X , and composing with the stretch [0, 1
2 ] → [0, 1],

we may assume that this labelled subset is in fact a smooth submanifold W
with boundary, such that the boundary is the subset labelled by ∗ and such
that the projection on Q is a local embedding (of codimension 0). Conversely,
such a subset determines a map f : Q→ C1(X). Notice that W is canonically
framed in Q × R1 by the R1–coordinate and also notice that if Q and f are
based then W can be assumed to be empty over the basepoint of Q.

Next we interpret maps in ΩSX . A map Q→ ΩSX determines a map f : Q×
R1 → SX . By making f transverse to the suspension line through 1

2 in the
whisker in X , and composing with the stretch [0, 1

2 ] → [0, 1], we may assume
that f−1(SX − {∗}) is a codimension 0 submanifold whose boundary maps
to ∗SX . By further making f transverse to X × {0} we may assume that
f−1((X−{∗})×{0}) is a framed codimension 1 submanifold W with boundary,
equipped with a map l: W → X such that l−1∗ = ∂W and that f maps
framing lines to suspension lines and the rest is mapped to ∗SX . Conversely
such a framed submanifold determines a map Q→ ΩSX . Further if Q and f
are based then W is empty over the basepoint of Q.

With these geometric descriptions there is an obvious forgetful map [Q,C1X]→
[Q,ΩSX] which may be seen to be induced by kX . Now consider the case
when Q = Sn and consider a framed manifold W representing an element of
πn(SX). If it has a closed component we can change the labelling function
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to map a small disc to ∗X by using a collar on the disc and mapping the
collar lines to a path to the basepoint in X . Then the interior of the disc,
which is now labelled by ∗X , may be deleted from W . After eliminating all
closed components in this way the compression theorem (the codimension 0
case) implies that πn(C1X)→ πn(ΩSX) is surjective.

Injectivity is proved similarly by using the case Q = Sn×I and working relative
to Q× {0, 1}.

Notice that only the Global Compression Theorem [14; 2.1] (and addendum
(i)) were used for the proof of 3.1 so the complete new proof is short. However,
for the full loops–suspension theorem below we need the multi-compression
theorem. (For the shortest proof of the full theorem, use the short proof of the
multi-compression theorem given in [15].)

Let Cn(X) denote the configuration space of points in Rn labelled in X , with,
as before, points labelled by ∗ removable. There is a map qX : Cn(X) →
ΩnSn(X) defined in a similar way to kX (as interpreted in the last proof)
using little cubes around the points in Rn with axes parallel to the axes of Rn .

Theorem 3.2 Let X be a path-connected topological space with a non-
degenerate basepoint then qX is a weak homotopy equivalence.

Proof The proof is similar to the proof for theorem 3.1. A map Q→ Cn(X)
can be see as partial cover of Q embedded in Q×Rn and a map Q→ ΩnSn(X)
can be see as a framed codimension n submanifold of Q× Rn .

There is then a function Maps(Q→ Cn(X)) to Maps(Q→ ΩnSn(X)) given by
taking the parallel framing on the partial cover. This can be seen to be given
by composition with qX . Closed components in the submanifold of Q × Rn
may be punctured as in the last proof. The codimension 0 case of the multi-
compression theorem now implies that qX induces a bijection between the sets
of homotopy classes.

4 Embeddings and knots

Two basic problems of differential topology are the embedding problem : given
two manifolds M and Q, decide whether M embeds in Q, and the knot prob-
lem : classify embeddings of M in Q up to isotopy. The corresponding problems
for immersions (replace embedding by immersion and isotopy by regular homo-
topy) are, in some sense, solved by immersion theory; ie, solved by reducing to
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vector bundle problems for which there are standard obstruction theories. Now
if M embeds in Q then it certainly immerses in Q and if two embeddings are
isotopic then they are certainly regularly homotopic. Thus it makes sense to
consider the relative embedding problem : decide whether a given immersion of
M in Q is regularly homotopic to an embedding, and the relative knot problem :
given a regular homotopy between embeddings, decide if it can be deformed to
an isotopy. Since a manifold often immerses in a considerably lower dimension
than that in which it embeds, it makes sense to consider the following more
general problems.

Embedding problem 4.1 Suppose given an immersion f : M → Q and an
integer n ≥ 0. Decide whether f × 0 : M → Q× Rn is regularly homotopic to
an embedding.

Knot problem 4.2 Classify, up to isotopy, embeddings of M in Q × Rn
within the regular homotopy class of f × 0 : M → Q × Rn , where f : M → Q
is a given immersion.

The compression theorem gives substantial information on these problems. In
particular we can give formal solutions which make it easy to define obstructions
to the existence of such embeddings or isotopies.

The embedding theorem

Turning first to the embedding problem. Suppose that we are given an immer-
sion f : M → Q and suppose that it is self-transverse [10]. Then there is a
simple obstruction theory to decide if it is covered by an embedding in Q×Rn .
Construct a neighbourhood system N by choosing coherent tubular neighbour-
hoods on each stratum of the image. This neighbourhood system comprises a
number of disc bundles each with a collection of subdisc bundles. The embed-
ding is covered by an embedding in Q× Rn if and only if this neighbourhood
system admits a particular kind of structure described precisely by Koschorke
and Sanderson [9] as follows.

There are classifying spaces Ic and Icn with a natural map p: Icn → Ic , where
c = q −m (codimension). The space Ic classifies self-transverse immersions of
codimension c and Icn classifies such immersions covered by an embedding in
codimension c+ n. More precisely, Ic and Icn have good geometric structures
and transversality can be defined for maps of manifolds. Any map can be made
transverse and a transverse map Q→ Ic determines a self-transverse immersed
submanifold of Q of codimension c and equipped with a neighbourhood system
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and conversely (see also [3; sections 2 and 4] for a detailed discussion of a special
case). Thus the immersion of M in Q and the neighbourhood system N deter-
mine a transverse map αf : Q→ Ic ; the immersion is covered by an embedding
in Q × Rn if and only if this map lifts to Icn . These spaces have convenient
descriptions as configuration spaces; Ic can be identified with C∞(MOc), the
configuration space of points in R∞ labelled in the Thom space of the universal
c–dimensional vector bundle. Similarly Icn can be identified with Cn(MOc),
the configuration space of points in Rn labelled in the Thom space. Then p is
induced by the inclusion Rn ⊂ R∞ .

There are further classifying spaces Vc and Vcn which classify neighbourhood
systems of the types encountered above. Thus we have a transverse map
βf : M → Vc classifying the neighbourhood system N and the immersion is
covered by an embedding in N ×Rn if and only if βf lifts to Vcn . These spaces
also have descriptions as configuration spaces; Vc and Vcn can be identified with
C•∞(MOc) and C•n(MOc) respectively, which are the spaces of based configura-
tions in R∞ and Rn respectively, labelled as before in MOc and such that the
basepoint is labelled in the base BOc . There are natural maps Vc → Ic and
Vcn → Icn given by forgetting the basing; there is also a natural map p0: Vcn → Vc
induced by inclusion Rn ⊂ R∞ and finally a natural map Vc → BOc given by
considering the base label. The latter map classifies the induced tubular neigh-
bourhood of the immersion.

The given immersion now determines the following pull-back square in which
αf and βf are transverse :

M
βf−→ Vc

γf : f ↓ ↓ nat

Q
αf−→ Ic

We call a homotopy between such pull-back squares a pull-back homotopy if
the homotopy determines a pull-back square of the following form, where αF
and βF are transverse :

M × I βF−→ Vc

F ↓ ↓ nat

Q× I αF−→ Ic

Embedding theorem 4.3 Suppose we are given a self transverse immersion
f : M → Q and that c = q −m ≥ 1. Then the immersion f × 0 : M → Q×Rn
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is regularly homotopic to an embedding if and only if the pull-back square γf
is homotopic by a pull-back homotopy to a square which lifts over the natural
maps p, p0 to give a square of the form :

M
βg−→ Vcn

g ↓ ↓ nat

Q
αg−→ Icn.

Proof By the classification properties of Ic and Vc , a pull-back homotopy is
equivalent to a self-transverse regular homotopy of M in Q. But any regular
homotopy between self-transverse maps can be made self-transverse, so a pull-
back homotopy is equivalent to a regular homotopy of M in Q.

Suppose f × 0 : M → Q × Rn is regularly homotopic to an embedding. Let
F : M × I → Q × Rn × I be determined by this regular homotopy. Thus
F0 = F | (M × {0}) = f × 0 and F1 = F | (M × {1}) is an embedding. The
canonical n–frame on F0 extends to an n–frame on F . Apply the multi-
compression theorem to F1 to yield an isotopy of F1 to F ′1 which compresses
to an immersion g: M → Q. Extend the isotopy of F1 to an isotopy of F to
F ′ say rel F0 and apply the multi-compression theorem again to compress F ′

to a regular homotopy between f and g . By the remarks made above, there is
there is a pull-back homotopy of the required form. The converse is clear.

The natural map Vc → Ic is not a fibration. Thus the condition of pull-back
homotopy is difficult to interpret homotopy theoretically, and the embedding
theorem does not immediately reduce the problem to an obstruction theory.
However it does readily lead to many obstructions to the existence of embed-
dings. Any algebraic topological invariant of Ic which does not come from Icn
or of Vc which does not come from Vcn is such an obstruction. The former ob-
structions are obstructions to a regular cobordism to an embedding, and were
considered in [9]. The latter are obstructions to deforming the neighbourhood
system for M . There are also obstructions coming from the combinatorial
structure of the classifying spaces analogous to the (generalised) James–Hopf
invariants of a –set, defined in [3].

Classification of knots

There is a similar analysis for the knot problem. Rather than continuing to
consider embeddings in Q×Rn which cover immersions in Q, we shall consider
embeddings equipped with n independent normal vector fields (for example
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framed embeddings) since by the compression theorem these are equivalent.
Such an embedding f determines a pull-back square :

M
βf1−→ Vcn

ρf : f1 ↓ ↓ nat

Q
αf1−→ Icn.

where f1 = proj ◦ f .

The arguments used to prove theorem 4.3 now prove :

Theorem 4.4 Suppose that f, g : M → Q×Rn are embeddings equipped with
n independent normal vector fields and that q −m ≥ 1. Then f is isotopic to
g if and only if ρf is homotopic to ρg by a pull-back homotopy.

Corollary 4.5 Classification of knots Suppose that q −m ≥ 1. There is a
bijection between isotopy classes of embeddings f of M in Q × Rn equipped
with n independent normal vector fields and pull-back homotopy classes of
squares ρf .

The corollary gives many knot invariants, for example any homotopy invariant
of Icn , pulled back to Q, or of Vcn , pulled back to M . The former are invariants
of the cobordism class of the knot and the latter are invariants of the neighbour-
hood system under cobordism through neighbourhood systems of M . There
are also the combinatorial invariants mentioned earlier.

Remarks The invariants and obstructions discussed above have strong con-
nections with many existing invariants. The case c = 1, n = 1 is studied by
Fenn, Rourke and Sanderson see in particular [3; sections 2 and 4], where clas-
sifying spaces related to I1

1 but depending of the fundamental rack, are also
considered. There are combinatorial invariants defined in this case, for exam-
ple the generalised James–Hopf invariants. These link with those defined by
Koschorke and Sanderson [9], which as indicated above is an analysis of the
problems considered here but only up to cobordism.

We shall give more details here and also explain connections with other known
obstructions and invariants in a subsequent paper.
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5 Controlling singularities of a projection

Definition A weakly stratified set is a set X with a flag of closed subsets

X = S0 ⊃ S1 ⊃ S2 . . . ⊃ St ⊃ St+1 = ∅
such that, for each i = 0, . . . , t, Si − Si+1 is a manifold.

We also say that Si is a weak stratification of X and we call the manifolds
Si − Si+1 the strata.

Remark This is very much weaker than the usual notion of a stratified set —
there is no condition on the neighbourhood of Si+1 in Si or any relationship
between the dimensions of the strata.

Definitions Suppose that X is a weakly stratified set and that X ⊂ W (a
manifold). Suppose that ξn is a plane field on W (ie a n–subbundle of TW )
defined at X . We say ξ is weakly normal to X if ξ is normal to Si − Si+1 for
each i = 0, . . . , p.

Suppose that Mm ⊂ Ww and that ξn is a plane field defined at M . We say
that ξ has regular singularities on M if it is normal to a weak stratification of
M .

Example 5.1 A plane field in general position has regular singularities. How-
ever so do many plane fields which are far from general position. Here is an
explicit example with n = 1 constructed by Varley [19]. Let α be the x–axis
in R3 and C ⊂ α a cantor set. Let π be the surface (a smooth plane) given by
z = y3 which contains α and has a line of inflection along α. Let ξ be the line
field parallel to the y–axis and distort ξ to have a small negative z–component
off C . Then ξ is tangent to π precisely at C and very far from general position.
But it is has regular singularities by choosing α as one stratum and π as the
next.

It is easy to construct plane fields with non-regular singularities: for an example
with n = 1, choose any line field for which part of a flow line lies in M .

C0–Singularity Theorem 5.2 Suppose that Mm ⊂ Ww and that ξ is an
integrable n–plane field on TW defined on a neighbourhood U of M such that
ξ has regular singularities on M and that n+m < w . Suppose given ε > 0 and
a homotopy of ξ through integrable plane fields on TW defined on U finishing
with the plane field ξ′ . Then there is an ambient isotopy of M in W which
moves points at most ε moving the pair M, ξ|M to M ′, ξ′|M ′ .
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The theorem gives an answer to the C0–Singularity Problem (stated in section
1) in the case that dim(M) < dim(Q). Take ξ′ to be the tangent bundle to the
fibres of p then the singularities of p|M can be made to coincide with those of
any plane field homotopic to ξ′ with regular singularities.
Some condition on the singularities is clearly necessary, for example, again with
n = 1, suppose that part of a flow line of the normal line field lies in M and
is not already vertical (thinking of ξ′ as vertical) then no small isotopy can
make this field vertical. The condition of regularity is very weak as can be seen
by considering examples similar to 5.1. The condition that the plane fields are
integrable is needed for our proof, but we do not have an example to show that
it is necessary for the result. Note that example 5.1 is integrable and see [19]
for more examples.

Proof We shall prove a more general result: M is replaced by any weakly
stratified set X such that dimensions of strata are < w − n and ξ is weakly
normal to X . The idea is to apply the Normal Deformation Theorem to each
stratum in turn starting with St and continuing with St−1−St etc). After the
t− ith move ξ concides with ξ′ on Si and with care this can also be assumed to
be true near Si and in particular in a neighbourhood of Si in Si−1 . The next
move is made relative to a smaller neighbourhood, and the result is proved in
t+ 1 steps.
So the only point that needs work is the point that ξ can be assumed to concide
with ξ′ near Si . This is where integrability is needed. By integrability we can
assume that ξ is the tangent bundle to a foliation F of W defined near Si and
similarly ξ′ is the tangent bundle to F ′ . Now F and F ′ coincide at Si and
by a C∞–small isotopy F can be moved to F ′ near Si and this carries ξ into
coincidence with ξ′ near Si as required.

Addenda The proof works (indeed was given) for a weakly stratified set in-
stead of a submanifold and has a natural relative version directly from the proof.
There is also a parametrised version which follows by combining the proof of
the parametrised Normal Deformation Theorem [14, page 425] or [15, page 439]
with the last proof:
Suppose that we have a family of embeddings of Mt in W where t ∈ K (a
parameter manifold) together with integrable plane fields ξt for t ∈ K having
regular singularities with Mt . Suppose further that the singularities are “locally
constant” over K (ie the whole situation is locally trivial). Suppose given a
K–parameter homotopy of ξt through integrable plane fields to ξ′t . Then there
is a K–parameter family of small ambient isotopies carrying Mt, ξt to M ′t , ξ

′
t .

Varley [19] gives a more general parametrised theorem in which the signularities
are not assumed locally constant.
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Comments The philosophy of our solution to the C0–singularity problem is
that the singularities of an arbitrary plane field are instrinsic to the embedding
M ⊂ W and invariant under isotopy of the situation. There is a very nice
description in the metastable range where there is a single singularity manifold
(in general position). This can be regarded as a fine bordism class in the sense
of Koschorke [7] and is an instrinsic embedded characteristic class. For more
detail see [19].
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